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1.  INTRODUCTION

Variable extrinsic mortality directly influences age
at maturity and lifespan of terrestrial vertebrates
where higher mortality rates result in earlier matura-
tion and shorter lifespans (Ricklefs 2010). For fishes,
high extrinsic mortality is expected to select for small
adult body size, short lifespan, and short generation
time (Winemiller 2005). Fishes of the smallest size
classes that inhabit benthic reef habitats are collec-
tively known as cryptobenthic reef fishes, and they
constitute a significant portion of reef fish biodiversity

and biomass production (Brandl et al. 2018). Field,
mesocosm, and otolith studies indicate that crypto-
benthic reef fishes, such as gobies, experience high
predation mortality on coral reefs (Hernaman & Mun-
day 2005b, Depczynski & Bellwood 2006, Goatley &
Bellwood 2016, Goatley et al. 2017). Understanding
the life history strategy of species can clarify their
functional role, and contribution to the productivity
and resilience of an ecosystem (Winemiller 2005).

The glass goby Coryphopterus hyalinus (Böhlke &
Robins 1962) and masked goby C. personatus (Jordan
& Thompson 1905) are both abundant and widespread
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in the Caribbean (Pezold et al. 2015); moreover, they
are often the most numerically abundant gobies on
shallow Caribbean reefs (Luckhurst & Luck hurst 1978,
Greenfield & Johnson 1999, Dominici-Arosemena &
Wolff 2005). Like most reef fishes, C. hyalinus and C.
personatus disperse as pelagic larvae and then un-
dergo a morpho-physiological transition to benthic
reef habitat known as settlement (Leis & McCormick
2002). These gobies form large social aggregations of
10s to 1000s of individuals (Luckhurst & Luckhurst
1978, Robertson & Justines 1982), and these shoals
hover in the water column above the edges and drop-
off slopes of coral reefs (Cole & Robertson 1988,
Thacker & Cole 2002). C. hyalinus and C. personatus
ex hibit protogynous hermaphroditism in which all in-
dividuals begin life as females and some transition to
males after settlement in as little as 9 d; however, this
ability is regulated by social hierarchy dynamics
within the population (Cole & Robertson 1988, Cole &
Shapiro 1990, Allsop & West 2004). Based on gonad
histology, post-settlement C. hyalinus and C. person-
atus are reproductively mature at a small size of 17−
19 mm total length (TL); however, some males de -
velop from immature females, and as a result, these
primary males can mature at a smaller size of 13−
15 mm TL (Cole & Robertson 1988).

C. hyalinus and C. personatus feed on plankton,
and they are found at a broad depth range (2−52 and
1− 70 m respectively, Baldwin & Robertson 2015).
Larger reef fishes such as lionfish and grouper feed
on these gobies (Randall 1967, Morris & Akins 2009,
Côté & Maljković 2010), and their small adult body
size indicates that they are highly vulnerable to pre-
dation (Sogard 1997, Goatley & Bellwood 2016,
Goatley et al. 2017). Along with their high numeri-
cal abundance and widespread distribution, these
ecological characteristics indicate that C. hyalinus
and C. personatus likely play a key trophic role in
transferring nutrients from pelagic plankton to reef
predators and the reef benthos (Winterbottom &
Southcott 2008).

The life history traits of fishes can be used to pre-
dict features of their ecology and population dynam-
ics (Bjørkvoll et al. 2012). For example, pelagic larval
duration (PLD) can be used to estimate dispersal
potential (Lester & Ruttenberg 2005). Larval growth
and body size at settlement have implications for
recruitment success and survivorship (Wilson &
Meekan 2002, Rankin & Sponaugle 2014). We are
also interested in age at maturity, maximum body
size, and lifespan because these life history traits can
serve as indicators of predation risk where high pre-
dation risk likely results in early maturation and

short lifespan (Reznick & Endler 1982, Depczynski &
Bellwood 2006, Walsh & Reznick 2008).

We seek to test if C. hyalinus and C. personatus ex -
hibit extreme life history traits similar to those de -
scribed in a few other cryptobenthic reef fishes with
small adult body sizes and highly abundant popu-
lations. Specifically, we aim to (1) quantify and
describe the life history traits (i.e. PLD, TL at settle-
ment, maximum TL at capture, age at maturity, life-
span, and growth patterns) of C. hyalinus and C. per-
sonatus and (2) explore the implications of this life
history on the evolution and functional role of these
species in coral reef ecosystems.

2.  MATERIALS AND METHODS

2.1.  Study site and sample collection

Coryphopterus hyalinus and C. personatus speci-
mens were collected by divers on SCUBA using hand
nets and anesthetic clove oil at sites on the windward
side of Turneffe Islands Atoll, Belize in early January
2017. Turneffe Atoll is located on the Belize Barrier
Reef, and it is a bank reef consisting of mangrove is -
lands, patch reefs, and fringing reefs partially en -
circling a shallow lagoon (Gibson & Carter 2003).
Post-settlement specimens were collected from fore -
reef sites at depths between 11 and 17 m. Individual
specimens were photographed shortly after collec-
tion and before preservation in 95% ethanol to retain
their body size before shrinking occurred. Body size
was measured as TL and standard length (SL) at cap-
ture (precision: 0.001 mm) on calibrated images
using ImageJ software.

2.2.  Species identification

To determine species identity, we used a 2-step
process with restriction site-associated DNA (RAD)
sequencing. RAD libraries consisting of ~35 000 DNA
fragments were generated following a modified
RAD-tag procedure (Peterson et al. 2012). Genomic
DNA was fragmented using 2 restriction endonucle-
ases (MspI and EcoRI) and size-selected for frag-
ments between 450 and 575 bp in our university's
Genomics Core laboratory. As no reference genome
is available for Coryphopterus, 6 samples were
sequenced on a MiSeq platform (unidirectional read
length of 300 bp) to ensure overlapping coverage for
a more ac curate reference assembly. All samples
were then se quenced using the NovaSeq 6000 S4
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sequencing lane with a unidirectional read length of
150 bp. MiSeq and NovaSeq sequencing was per-
formed by New York University (NYU) Langone
Genome Technology Center. After trimming to
remove low-quality sequences with TRIMMOMATIC

(Bolger et al. 2014), dDocent (Puritz et al. 2014)
was used to de novo as semble MiSeq reads into 1
meta genome to which NovaSeq sequences were
mapped. Single-nucleotide polymorphisms (SNPs)
were filtered to retain only loci with 2 alleles, no inser-
tions/deletions (indels), have a minimum Phred qual-
ity of 94, a minimum mean depth of coverage of 43,
and be present in >85% of individuals before contigs
were randomly sampled for a single SNP. To identify
species, NovaSeq sequences were mapped to the
mitochondrial genome of Bathygobius cocosensis
(Evans et al. 2018). Sequences that successfully
mapped were BLASTed in GenBank (Alt schul et al.
1990), and any sequence with >99% similarity to
either C. hyalinus or C. personatus were assigned
these identities. For individuals that did not map to
the reference mitochondrial genome, we used k-
means clustering of principal components to identify
nuclear multi-locus DNA clusters (Jombart et al.
2010), with the number of clusters chosen based on
minimization of the Baye sian information criterion
(BIC) value, using both the reference samples for
which we had species IDs from BLAST and the un -
known specimens. The 2 resulting clusters aligned
with the BLAST-based reference species identity and
were used to identify individuals from the unknown
dataset.

2.3.  Otolith microstructure

Life history parameters, including PLD, back-
 calculated TL at settlement, pre- and post-settlement
growth patterns, and total age at capture, were esti-
mated using otolith microstructure techniques and
analysis. We assumed that 1 otolith increment corre-
sponded to 1 d, since several gobies, including those
ecologically similar to C. hyalinus and C. personatus,
deposit otolith increments consisting of a dark and
light band on a daily basis (Hernaman et al. 2000,
Shafer 2000, Depczynski & Bellwood 2006, Wilson et
al. 2008). Similarly, we assumed that the first otolith
in crement found near the primordium is deposited at
or near hatching (Thorrold & Hare 2002). We recog-
nized a settlement mark, corresponding to the transi-
tion from a pelagic to benthic environment (Wilson &
McCormick 1997, Shafer 2000, Hogan et al. 2017), as
a particularly contrasting increment.

2.4.  Otolith preparation and 
microstructure analysis

Sagittal otoliths were extracted from a subset of
collected individuals. Once cleaned of residual tissue
with MilliQ water and dried, whole otoliths were
mounted sulcus-down to petrographic slides with
thermoplastic Crystalbond™, leaving the otolith sur-
face exposed. Otoliths were viewed using Type B
immersion oil and transmitted light at 500× magnifi-
cation with a Nikon Eclipse LV100ND compound
micro scope to assess how much polishing was
needed. Oil was blotted dry, and otoliths were hand-
polished with 3M imperial diamond lapping films
(15, 6, 3, 1, 0.5 μm) until a continuous sequence of
growth increments were visible from the otolith pri-
mordium to the edge (Fig. 1). Otoliths were imaged
at 500× magnification with a Nikon Digital Sight DS-
fi2 camera. All otolith measurements were made
from calibrated images using NIS-Elements com-
puter imaging software and were performed by 1
reader. Otolith radius at capture, a measure of total
otolith size, was measured as the longest linear dis-
tance from core to edge. PLD was estimated as the
number of daily increments between the otolith pri-
mordium and the settlement mark (our Fig. 1; Thor-
rold & Hare 2002). Age at capture (days) and daily
growth were estimated simultaneously by counting
increments and measuring their widths (μm) respec-
tively along the otolith radius. Increment widths or
otolith growth rates were standardized as a percent-
age of the larval or post-larval component of the
radius at capture. This approach reduces bias in esti-
mating otolith growth rates from the radius chosen
for measurement and allows comparison of otolith
growth rates within and between life history stages.
Otoliths were re-aged on a separate occasion, blind
to sample information, and the coefficient of varia-
tion (CV) was used as a measure of precision
between the 2 estimates (Campana 2001) where
individuals with CV <10% were retained for analy-
ses (Walker & McCormick 2004, Hernaman & Mun-
day 2005a, Depczynski & Bellwood 2006).

2.5.  Back-calculated TL at settlement

Individual TL at settlement (mm) was estimated
using the experimental Modified Fry back-calcula-
tion model (Eq. (1) in Box 1; Vigliola & Meekan
2009) in the R package RFISHBC (Ogle 2018) for
comparison with TL at reproductive maturity and to
determine the percentage of maximum TL attained
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at settlement. This specific model performs well in
ecologically similar gobies (Wilson et al. 2008).
Body length at hatch was set at 2 mm based on a
breeding study of C. personatus (Gardner 2000),
and otolith radius at hatch was averaged across
individuals to obtain a mean (±SD) of 6.73 ± 1.74 μm
(n = 66) for C. hyalinus and 6.77 ± 1.59 μm (n =13)
for C. personatus. These measurements at hatch for
C. hyalinus and C. personatus are comparable to
other ecologically similar gobies (Wilson et al. 2008),
including congeners (Kramer & Patzner 2008). We
evaluated linearity in a set of confirmatory tests to
establish that otolith measures are reliable proxies
of back-calculated TL, growth, and age for C. hya -
linus and C. personatus. The equation (Eq. (1)) is
shown in Box 1, where TLs is the TL at settlement,
0.75L0p is the body length at otolith formation, L0p
is the body length at hatch, Lcap is the TL at cap-
ture, Ri is the otolith radius at settlement, R0p is
the mean otolith radius at hatch, and Rcap is the
otolith radius at capture.

2.6.  Statistical analysis

To test the hypothesis that C. hyalinus and C. per-
sonatus attain small adult body sizes, we measured a
broad size range of several post-settlement individuals
to determine the frequency distribution of TLs. To test
for short lifespan (<1 yr), we aged individuals of both
species that spanned their TL range to determine the
frequency distribution of estimated age at capture.
We performed a linear regression on estimated age
and TL at capture to test for continuous post-settle-
ment growth. We estimated age at reproductive ma-
turity from known estimates of TL at re productive ma-
turity. We performed a spline smooth on average
larval growth and PLD to determine if and how larval
growth influences PLD. These individual growth av-
erages were calculated by summing daily larval
growth rates and dividing by PLD. We used a 1-way
ANOVA to test for significant differences in average
daily growth between growth stages (larval, 10 d pre-
settlement, and 10 d post-settlement). General linear
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Fig. 1. Sagittal otolith radius of Coryphopterus hyalinus/personatus imaged at 500× magnification indicating key features. Esti-
mated age at capture: 95 d; pelagic larval duration: 28 d. The sagittal otoliths of both gobies are very similar in appearance. P: pri-
mordium; S: settlement mark; E: edge. The black line from ‘P’ to ‘S’ indicates the larval component of the radius at capture 

while the black line from ‘S’ to ‘E’ indicates the post-larval component of the radius at capture. 
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hypothesis testing was performed using planned post
hoc comparisons to test for significant differences in
average daily growth between (1) larval stage and
10 d post-settlement, and (2) 10 d pre- and post-settle-
ment with free ad justment of p-values. Model as-
sumptions of normality and homogeneity of variances
were evaluated against Shapiro-Wilk α = 0.01 and
Breusch-Pagan or Brown-Forsythe-Levene α = 0.05,
respectively. Both assumptions were met in most
analyses; however, de partures from normality in the
C. hyalinus spline smooth and ANOVA were gener-
ally robust given the adequate sample size specified
by the central limit theorem and ability to interpret
untransformed raw data. All statistical analyses used
α = 0.05 to determine statistical significance and were
performed in R v.3.4.1 (R Core Team 2017) using the
following packages: multcomp (Hothorn et al. 2008),
ggplot2 (Wickham 2009), mgcv (Wood 2011), gridEx-
tra (Auguie 2017), dplyr (Wickham et al. 2018), and
tidyr (Wickham & Henry 2019).

3.  RESULTS

3.1.  Species identification

We collected a total of 729 individuals. A total of
1.9 billion NovaSeq reads were sequenced, with a
median of 1.5 million reads per individual. The final
filtered dataset consisted of 1446 SNPs, with mean
individual depth of coverage of 127 (median: 35) in
729 individuals. Mapping of raw NovaSeq reads to
the Bathygobius cocosensis mitochondrial genome
followed by using BLAST to identify species and re -
sulted in the identification of 166 Coryphopterus
hya li nus and 67 C. personatus. The k-means cluster-
ing of principal components resulted in 2 clear
groupings with each aligning well with the BLAST
results (Fig. S1 in the Supplement at www. int-res.
com/ articles/ suppl/  m659p161_ supp. pdf). Five indi-
viduals showed disagreement between nuclear clus-
ter assignment and BLAST identity suggesting po-
tential introgression (Selwyn et al. unpubl.). After
species assignment, there were a total of 595 C. hya -
li nus and 134 C. personatus which were used in sub-
sequent analyses.

3.2.  TL at capture, otolith radii, and 
back-calculated TL at settlement 

We had a total of 449 C. hyalinus and 93 C. perso -
natus with measurements of TL at capture. Of these,
66 C. hyalinus (CV: 2.80 ± 2.29%, mean ± SD) and
13 C. personatus (CV: 3.37 ± 2.30%) were processed
for the full suite of otolith microstructure measure-
ments. This subset of samples for both species
spanned their TL at capture range (Fig. 2a, Fig. S2a
in the Supplement) from 16.80 to 45.84 mm with a
mean (±SD) of 30.09 ± 5.90 mm for C. hyalinus (n =
449, Fig. 2a), and from 18.37 to 57.88 mm with a
mean of 38.87 ± 8.83 mm for C. personatus (n = 93,
Fig. S2a). For 13 additional C. hyalinus, otolith
radius at settlement, larval duration (CV: 3.58 ±
2.76%, mean ± SD), and growth could be estimated,
with 10 of these also having estimates for otolith
radius at capture, and hence, back-calculated TL at
settlement. Otolith radius at settlement ranged from
141.0 to 292.1 μm with a mean (±SD) of 187.1 ±
22.66 μm for C. hyalinus (n = 79), and from 152.2 to
211.1 μm with a mean of 179.0 ± 19.39 μm for C.
per so natus (n = 13). Otolith radius at capture
ranged from 231.2 to 565.8 μm with a mean of
421.7 ± 71.51 μm for C. hyalinus (n = 76), and from
301.8 to 737.5 μm with a mean of 502.0 ± 141.97 μm
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Fig. 2. (a) Frequency distribution of Coryphopterus hyali-
nus total length (TL) at capture. Lighter-shaded region: the
subset of individuals (n = 66) with an estimated age at cap-
ture. Binwidth: 1.5 mm. (b) Relationship between C. hyali-
nus otolith radius and TL at capture modeled by a linear 

regression. Shaded area: 95% confidence interval
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for C. personatus (n = 13). Otolith radius at capture
was positively correlated with TL at capture for C.
hyalinus (p < 0.001, r2 = 0.76, Fig. 2b) and C. perso -
natus (p < 0.001, r2 = 0.87, Fig. S2b). This indicates
that daily otolith growth is proportional to daily
somatic growth (Campana & Neilson 1985, Thorrold
& Hare 2002) and supports back-calculation of TL
at settlement (Vigliola & Meekan 2009). Back-
calculated TL at settlement ranged from 11.59 to
21.86 mm with a mean (±SD) of 15.27 ± 1.50 mm for
C. hyalinus (n = 76, Fig. S3 in the Supplement), and
from 12.52 to 18.14 mm with a mean of 15.52 ±
1.58 mm for C. personatus (n = 13, Fig. S3).

3.3.  Age at capture and PLD

Age at capture ranged from 51 to 136 d with a
mean (±SD) of 97 ± 19.87 d (n = 66, Fig. 3a) for
C. hyalinus, and from 62 to 195 d with a mean of
112 ± 37.37 d (n = 13) for C. personatus. Otolith
radius at capture was positively correlated with age
at capture for C. hyalinus (p < 0.001, r2 = 0.70, Fig. 3b)
and C. personatus (p < 0.001, r2 = 0.91, Fig. S4a in the
Supplement). This makes otolith size a useful predic-
tor of age and indicates that otolith increments are
continually de posited as individuals age, which re -
duces bias in age underestimations (Green et al.
2009). Age at capture was positively correlated with
TL at capture for C. hya linus (p < 0.001, r2 = 0.59,
Fig. 4) and C. perso na tus (p < 0.001, r2 = 0.81,
Fig. S4b). PLDs ranged widely from 21 to 50 d with a
mean (±SD) of 32 ± 5.36 d for C. hyalinus (n = 79,
Fig. 5), and from 30 to 46 d with a mean of 35 ± 5.02 d
for C. personatus (n = 13).

3.4.  Pre-and post-settlement growth

Overall, both gobies grew fastest during the larval
stage, starting slow at first, then rapidly accelerating
before peaking during the ~25 d prior to settlement
(Fig. 6a, Fig. S5a in the Supplement). Further,
growth declined immediately upon settlement and
continued to decline slowly thereafter (Figs. 6a &
S5a). Average growth of both gobies was faster dur-
ing the larval stage relative to 10 d post-settlement
(both p < 0.01, Table 1, Figs. 6a & S5a). For C. hyali-
nus, average daily growth abruptly decreased by
25% from the pre-settlement zone (average ± SE of
10 d pre-settlement: 3.25 ± 0.10%) to the post-settle-
ment zone (average of 10 d post-settlement: 2.43 ±
0.12%) (p < 0.001, Table 1, Fig. 6b). For C. person-
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atus, average daily growth abruptly decreased by
33% from the pre-settlement zone (average of 10 d
pre-settlement: 2.95 ± 0.21%) to the post-settlement
zone (average of 10 d post-settlement: 1.97 ± 0.24%)
(p < 0.01, Table 1, Fig. S5b). Individuals with longer
PLDs grew slower for a longer period early in the lar-
val stage, and then their growth increased rapidly,
ultimately peaking to similar larval growth rates of
individuals with shorter PLDs (Figs. 6a & S5a). Con-
sequently, average larval growth (%) was inversely
related to PLD for C. hyalinus (p < 0.001, r2 = 0.97,
Fig. 7) and C. personatus (p < 0.001, r2 = 0.96, Fig. S6
in the Supplement).
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4.  DISCUSSION

We used otolith microstructure analysis of 2 wide-
spread and abundant Caribbean reef gobies Cory -
pho pterus hyalinus and C. personatus to quantita-
tively describe their life history traits. We found that
these species exhibit remarkably short lifespans,
with 95% of individuals (n = 75) living at most 130 d.
Although PLDs of these species varied widely, 75%
(n = 69) of individuals had PLDs of at most 35 d. Inter-
estingly, average larval growth influences PLD,
where faster larval growth led to shorter PLDs.
Notably, these fishes may immediately transition to
reproductive growth after their settlement on the
reef. The small adult body size, quick generational
turnover, and short lifespan of these species are
among the most extreme life history traits recorded
for coral reef fishes (Table 2) and all vertebrates. We
explore the implications of this life history on the
evolution and functional role of these species in coral
reef ecosystems.

Faster larval growth can reduce size-selective
predation risk by producing larger size-at-age indi-
viduals that abbreviate their high-mortality larval
stage by reaching developmental competence sooner
(Fontes et al. 2011). Moreover, fitness of individuals
that grew faster as larvae may be considerably higher
than their slower-growing counterparts (Shima & Find-
lay 2002, Wilson & Meekan 2002). Although slower-

growing larvae spend more time in the pelagic envi-
ronment, this can increase their potential to disperse
farther and colonize relatively isolated reef habitats
(Lester & Ruttenberg 2005). However, we find that the
distribution of PLDs in C. hyalinus and C. personatus
contains a modal PLD that is less than the average PLD
and right-skewness with very few long PLDs (Fig. 5).
This indicates that C. hyalinus and C. personatus lar-
vae may remain relatively close to natal reefs, since
close relatives inhabit the same reefs (Selwyn et al.
2016). This is further supported by cryptobenthic fish
larvae being more abundant in near-reef environments
compared to offshore pelagic environments dominated
by larvae of larger reef fishes (Brandl et al. 2019). Lar-
val retention near reefs, concordant with our result of
a higher portion of faster-growing larvae with shorter
PLDs, may be a key mechanism by which cryptoben-
thic reef fishes like C. hyalinus and C. personatus sus-
tain their local populations and compensate for high
predation mortality on coral reefs (Brandl et al. 2019).

C. hyalinus and C. personatus attain small adult
body sizes (max.: 46 and 58 mm TL respectively,
Figs. 2a & S2a) and settle at comparatively large
body sizes (mean: ~15 mm TL for both fishes). Here,
back-calculated lengths at settlement were compara-
ble to lengths obtained from field collections of re -
cently settled C. hyalinus (6.9−8.4 mm SL, Victor
2015) and C. personatus (7.8−8.6 mm SL, Victor
2015), once corrected for the average length (±SD) of
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Family                 Representative            PLD               Body size at           Body size (mm)           Max.         Lifespan    Source
                                  species                    (d)                   settlement              and/or age at         body size             
                                                                                              (mm)            reproductive maturity      (mm)

Pomacentridae     Pomacentrus            14−23                   10 SL                      33−52 SL                70 SL         14−18 yr    Fowler & Doherty 
                              moluccensis       (Wellington &        (Beukers &           (Mapstone 1988)                                               (1992), 
                                                           Victor 1989,         Jones 1998)                                                                                      Doherty & Fowler 
                                                        Bay et al. 2006)                                                                                                                 (1994)
                            P. amboinensis           15−32                10−15 SL        34 SL (30 SL for early-     78 SL             6 yr        McCormick (2016)
                                                        (Bay et al. 2006)   (Kerrigan 1996)    maturing males); 2 yr                                           
Labridae                Thalassoma             39−55                      na                        70 SL; 1 yr              184 SL            7 yr        Ackerman (2004)
                                   lunare             (Victor 1986)
Gobiidae              Asterropteryx              na             Average of 7.5 TL    18−30 TL; 5−7 mo         56 TL            1.3 yr      Hernaman & 
                            semipunctatus                                (Hernaman 2003)                                                                (16 mo)     Munday (2005a,b)
                            Coryphopterus          21−50          Average of 15 TL            17−19 TL               46 TL           0.37 yr     Present study
                                 hyalinus                                     (back-calculated)    (13−15 TL for early-                           (136 d)
                                                                                                                        maturing males)
                                                                                                                 (Cole & Robertson 1988); 
                                                                                                                               22−51 d

Table 2. Life history traits of representative reef fishes from published studies that highly contrast and in turn emphasize the extreme life
histories of the reef gobies in our study. Body size and age at reproductive maturity are combined for males and females excluding Thalassoma
lunare (only female data available, data on early-maturing males is na). Lifespan and max. body size are the maximum reported for the spe-
cies and were typically obtained from males (i.e. Pomacentrus amboinensis, Thalassoma lunare, and Asterropteryx semipunctatus). na: not
available; PLD: pelagic larval duration; SL: standard length; TL: total length. Some cells include references for the data presented in that 

specific cell. The source column specifies the reference(s) for data in the remaining cells of that row
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the caudal fin (TL minus SL) for C. hyalinus (5.19 ±
1.33 mm, n = 446) and C. personatus (7.12 ± 2.01 mm,
n = 92) of the present study. These sizes at settlement
are not unusual for coral reef fishes (Kerrigan 1996,
Juncker et al. 2006); however, attaining 26 and 33%
of the maximum body length (C. personatus and C.
hyalinus respectively) prior to settlement is unusual.
For example, longer-lived reef fishes such as the
damsel fish Pomacentrus moluccensis and the ocean
sur geon fish Acanthurus bahianus attain 14 (Table 2)
and 12% of their maximum body length at settle-
ment, respectively (Robertson et al. 2005). A congener
of C. hyalinus and C. personatus, C. kuna, shows a
similar, albeit more extreme pattern (Victor et al.
2010). This may be a characteristic of the genus or
perhaps more broadly of cryptobenthic reef fishes
in general.

Back-calculated TL at settlement for C. hyalinus
(11.59 to 21.86 mm) and C. personatus (12.52 to
18.14 mm) roughly corresponds with TL at reproduc-
tive maturity (Fig. S3) for males (13 to 15 mm) and
females (17 to 19 mm) (Cole & Robertson 1988),
which indicates that some individuals mature imme-
diately upon or shortly after settlement. Based on our
age-at-length linear regression model for C. hyali-
nus, we estimate that a 20 mm TL individual matures
at a total age of 59 d (including PLD). However,
maturity most likely occurs earlier, because using the
upper estimate for TL at maturity provides the upper
estimate for age at maturity. By using age at settle-
ment to interpret age at maturity, we estimate that
total age at maturity occurs between 22 and 51 d for
C. hyalinus and between 31 and 47 d for C. person-
atus. The mean age at settlement of 33 d for C. hyali-
nus and 36 d for C. personatus can be used as relative
estimates of mean total age at maturity. In addition,
C. hyalinus and C. personatus change sex from
female to male at a mean TL (±SD) of 24.1 ± 2.3 mm
(Cole & Robertson 1988), which corresponds to a
mean total age of 71 and 61 d respectively, based on
our age-at-length linear regression models. How-
ever, the body size at maturity for males being well
below the body size at sex change from female to
male indicates that some of the males of both species
are primary males, having matured first as males
(Cole & Robertson 1988, Allsop & West 2004). Aver-
age daily growth abruptly decreases immediately
after settlement (Figs. 6b & S5b), which may indicate
a shift in energy being allocated to reproduction
instead of somatic growth (Cole & Robertson 1988,
Winemiller 2005), further supporting our conclusion
that reproductive maturation occurs at or shortly
after settlement.

C. hyalinus and C. personatus show continuous
post-settlement growth where they do not appear to
reach an asymptotic or maximum body length given
their length-at-age relationship (Figs. 4 & S4b).
 As ymptotic size in fishes is caused predominantly by
a shift in energy resources from somatic growth to
reproduction (Stamps et al. 1998). However, selec-
tion may favor continuous somatic growth through-
out reproductive age, particularly for small-bodied
fishes. The short reproductive lifespans of individu-
als of both species (95% had post-settlement lifes-
pans of at most 99 d, n = 75) indicate that continuous
growth, and consequently larger body size, can con-
fer an increasing fitness advantage with age, since
fecundity usually increases with body size (Wootton
1990, Heino & Kaitala 1999). Some cryptobenthic
reef fishes, including C. hyalinus and C. personatus,
exhibit protogynous hermaphroditism where larger
body length allows successful mate and nest site
monopolization in haremic males and can induce sex
change in females (Cole & Robertson 1988, Warner
1988, Brandl et al. 2018). Sex change from female to
male can alleviate mate competition (Allsop & West
2004) and enhance reproductive output in C. hyali-
nus and C. personatus which exhibit small home
ranges (Dominici-Arosemena & Wolff 2005) and a sex
ratio skewed toward females of about 4:1 (Cole &
Robertson 1988).

Along with reproductive advantages, continuous
growth can also provide advantages associated with
species survivorship and competitive dominance.
Natural mortality rates of juvenile and adult crypto-
benthic reef fishes can decline rapidly with increas-
ing body size where small increases in TL can result in
notable increases in lifespan (estimated 11 d per 1 mm
increase in TL for post-settlement fishes <43 mm TL,
Goatley & Bellwood 2016). Interestingly, the majority
of C. hyalinus and C. personatus individuals meas-
ured here are smaller than this body size threshold
(Figs. 2a & S2a). Also, small differences in body
length (i.e. a mean difference of 12 mm TL) can drive
whether a cryptobenthic reef fish will be predator or
prey (Goatley et al. 2017). Reef fishes, including gob-
ies, are aggressive most often with conspecifics,
where larger individuals generally initiate and win
competitive interactions for food and shelter (Shul-
man 1985, Munday & Jones 1998, Forrester et al.
2006). Notably, competitively dominant individuals
influence the growth, maturity, and habitat use along
with mortality of subordinate individuals, which can
regulate population distribution and abundance
(Shul man 1985, Munday & Jones 1998, Forrester et
al. 2006).
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Several features of the ecology (i.e. broad depth
range, planktivorous diet) and life history (i.e. small
adult body size, continuous growth, quick genera-
tional turnover rate, short lifespan) of C. hyalinus and
C. personatus indicate that they play a key trophic
role in transferring nutrients to Caribbean reef pred-
ators and the reef benthos (Brandl et al. 2019). Faster
rates of biomass accumulation, generational turn-
over, and energy transfer to other trophic levels
through predation can indicate that a species is more
prevalent within a food web (Thillainath et al. 2016).
High predation pressure (i.e. measured as presence/
absence, predation intensity, or predator abundance)
likely imposes time constraints on reproduction,
which can select for faster growth and earlier matu-
rity in fishes (Reznick & Endler 1982, Heibo & Magn-
hagen 2005, Walsh & Reznick 2008), reducing the
risk of predation occurring before reproduction. In
captivity, C. personatus can reproduce at 1 yr of age
and attains a considerably longer lifespan up to 4 yr
of age (Oceans Reefs and Aquariums [Fort Pierce,
FL] pers. comm.) which suggests high risk of extrin-
sic mortality in the wild (Randall & Delbeek 2009,
Ricklefs 2010). On the IUCN Red List, C. hyalinus
and C. personatus are listed as Vulnerable (Pezold et
al. 2015), due to invasive, predatory lionfish and
decreasing quality and extent of coral reef habitat in
the Caribbean (59% decline from 1970 to 2011, Jack-
son et al. 2014). However, the quick generational
turnover of some cryptobenthic reef fishes, such as
C. hyalinus and C. personatus, can enable greater
population resilience to these and other ecosystem
threats (Lefèvre et al. 2016). Lifespans of <1 yr, de -
scribed here for C. hyalinus and C. personatus, are
relatively rare among both terrestrial and aquatic
vertebrates (3 of 3761 species with lifespan estimates
in the AnAge database, De Magalhaes & Costa 2009,
Eckhardt et al. 2017). However, the life histories of
fishes are understudied relative to terrestrial verte-
brates, comprising only 25% of lifespan estimates in
the AnAge database (De Magalhaes & Costa 2009).

Small adult body size, quick generational turnover,
and short lifespan are a suite of life history traits that
closely characterizes other cryptobenthic reef fishes
(Sponaugle & Cowen 1994, Wilson 2004, Depczynski
& Bellwood 2006, Longenecker & Langston 2006,
Winter bottom & Southcott 2008, Victor et al. 2010).
Because of these life history traits, C. hyalinus and
C. personatus populations are highly productive and
widespread in the Caribbean, constituting a consid-
erable amount of biomass on coral reef habitats (Pez -
old et al. 2015). Further, cryptobenthic reef fishes
such as gobies and blennies make substantial contri-

butions to biomass productivity (g m−2 wk−1) that
match or exceed those of larger, abundant reef fishes
such as surgeonfishes and wrasses (Depczynski et al.
2007). Notably, a recent study indicates that crypto-
benthic reef fishes like C. personatus and C. hyalinus
constitute the majority of fish biomass consumed on
coral reefs (Brandl et al. 2019). As a result, fast-grow-
ing and short-lived cryptobenthic reef fishes as a
guild can serve as key forage species or trophic inter-
mediates between basal food levels (i.e. plankton,
detritus, algae) and piscivorous predators (Depczyn-
ski et al. 2007, Brandl et al. 2018).
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